jebl.math
Class MultivariateMinimum

java.lang.Object
  extended by jebl.math.MultivariateMinimum
Direct Known Subclasses:
OrthogonalSearch

public abstract class MultivariateMinimum
extends Object

abstract base class for minimisation of a multivariate function

Author:
Korbinian Strimmer

Nested Class Summary
static interface MultivariateMinimum.Factory
          A factory interface for MultivariateMinimums (because they aren't statefree)
 
Field Summary
 int maxFun
          maxFun is the maximum number of calls to fun allowed.
 int numFun
          total number of function evaluations necessary
 int numFuncStops
          numFuncStops is the number of consecutive positive evaluations of the stop criterion based on function evaluation necessary to cause the abortion of the optimization (default is 4)
 
Constructor Summary
MultivariateMinimum()
           
 
Method Summary
static void copy(double[] target, double[] source)
          Copy source vector into target vector
 double findMinimum(MultivariateFunction f, double[] xvec)
          Find minimum close to vector x
 double findMinimum(MultivariateFunction f, double[] xvec, int fxFracDigits, int xFracDigits)
          Find minimum close to vector x (desired fractional digits for each parameter is specified)
 double findMinimum(MultivariateFunction f, double[] xvec, int fxFracDigits, int xFracDigits, MinimiserMonitor monitor)
          Find minimum close to vector x (desired fractional digits for each parameter is specified)
abstract  void optimize(MultivariateFunction f, double[] xvec, double tolfx, double tolx)
          The actual optimization routine (needs to be implemented in a subclass of MultivariateMinimum).
 void optimize(MultivariateFunction f, double[] xvec, double tolfx, double tolx, MinimiserMonitor monitor)
          The actual optimization routine It finds a minimum close to vector x when the absolute tolerance for each parameter is specified.
 boolean stopCondition(double fx, double[] x, double tolfx, double tolx, boolean firstCall)
          Checks whether optimization should stop
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Field Detail

numFun

public int numFun
total number of function evaluations necessary


maxFun

public int maxFun
maxFun is the maximum number of calls to fun allowed. the default value of 0 indicates no limit on the number of calls.


numFuncStops

public int numFuncStops
numFuncStops is the number of consecutive positive evaluations of the stop criterion based on function evaluation necessary to cause the abortion of the optimization (default is 4)

Constructor Detail

MultivariateMinimum

public MultivariateMinimum()
Method Detail

findMinimum

public double findMinimum(MultivariateFunction f,
                          double[] xvec)
Find minimum close to vector x

Parameters:
f - multivariate function
xvec - initial guesses for the minimum (contains the location of the minimum on return)
Returns:
minimal function value

findMinimum

public double findMinimum(MultivariateFunction f,
                          double[] xvec,
                          int fxFracDigits,
                          int xFracDigits)
Find minimum close to vector x (desired fractional digits for each parameter is specified)

Parameters:
f - multivariate function
xvec - initial guesses for the minimum (contains the location of the minimum on return)
fxFracDigits - desired fractional digits in the function value
xFracDigits - desired fractional digits in parameters x
Returns:
minimal function value

findMinimum

public double findMinimum(MultivariateFunction f,
                          double[] xvec,
                          int fxFracDigits,
                          int xFracDigits,
                          MinimiserMonitor monitor)
Find minimum close to vector x (desired fractional digits for each parameter is specified)

Parameters:
f - multivariate function
xvec - initial guesses for the minimum (contains the location of the minimum on return)
fxFracDigits - desired fractional digits in the function value
xFracDigits - desired fractional digits in parameters x
Returns:
minimal function value

optimize

public abstract void optimize(MultivariateFunction f,
                              double[] xvec,
                              double tolfx,
                              double tolx)
The actual optimization routine (needs to be implemented in a subclass of MultivariateMinimum). It finds a minimum close to vector x when the absolute tolerance for each parameter is specified.

Parameters:
f - multivariate function
xvec - initial guesses for the minimum (contains the location of the minimum on return)
tolfx - absolute tolerance of function value
tolx - absolute tolerance of each parameter

optimize

public void optimize(MultivariateFunction f,
                     double[] xvec,
                     double tolfx,
                     double tolx,
                     MinimiserMonitor monitor)
The actual optimization routine It finds a minimum close to vector x when the absolute tolerance for each parameter is specified.

Parameters:
f - multivariate function
xvec - initial guesses for the minimum (contains the location of the minimum on return)
tolfx - absolute tolerance of function value
tolx - absolute tolerance of each parameter
monitor - A monitor object that receives information about the minimising process (for display purposes) note: The default implementation just calls the optimize function with out the Monitor!

stopCondition

public boolean stopCondition(double fx,
                             double[] x,
                             double tolfx,
                             double tolx,
                             boolean firstCall)
Checks whether optimization should stop

Parameters:
fx - current function value
x - current values of function parameters
tolfx - absolute tolerance of function value
tolx - absolute tolerance of each parameter
firstCall - needs to be set to true when this routine is first called otherwise it should be set to false
Returns:
true if either x and its previous value are sufficiently similar or if fx and its previous values are sufficiently similar (test on function value has to be succesful numFuncStops consecutive times)

copy

public static final void copy(double[] target,
                              double[] source)
Copy source vector into target vector

Parameters:
target - parameter array
source - parameter array