|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectjebl.math.NumericalDerivative
public class NumericalDerivative
approximates numerically the first and second derivatives of a function of a single variable and approximates gradient and diagonal of Hessian for multivariate functions
| Constructor Summary | |
|---|---|
NumericalDerivative()
|
|
| Method Summary | |
|---|---|
static double[] |
diagonalHessian(MultivariateFunction f,
double[] x)
determine diagonal of Hessian |
static double |
firstDerivative(UnivariateFunction f,
double x)
determine first derivative |
static double[] |
gradient(MultivariateFunction f,
double[] x)
determine gradient |
static void |
gradient(MultivariateFunction f,
double[] x,
double[] grad)
determine gradient |
static double |
secondDerivative(UnivariateFunction f,
double x)
determine second derivative |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
|---|
public NumericalDerivative()
| Method Detail |
|---|
public static double firstDerivative(UnivariateFunction f,
double x)
f - univariate functionx - argument
public static double secondDerivative(UnivariateFunction f,
double x)
f - univariate functionx - argument
public static double[] gradient(MultivariateFunction f,
double[] x)
f - multivariate functionx - argument vector
public static void gradient(MultivariateFunction f,
double[] x,
double[] grad)
f - multivariate functionx - argument vectorgrad - vector for gradient
public static double[] diagonalHessian(MultivariateFunction f,
double[] x)
f - multivariate functionx - argument vector
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||