|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use UnivariateFunction | |
---|---|
jebl.math |
Uses of UnivariateFunction in jebl.math |
---|
Classes in jebl.math that implement UnivariateFunction | |
---|---|
class |
OrthogonalLineFunction
converts a multivariate function into a univariate function by keeping all but one argument constant |
Methods in jebl.math with parameters of type UnivariateFunction | |
---|---|
double |
UnivariateMinimum.findMinimum(double x,
UnivariateFunction f)
Find minimum (first estimate given) |
double |
UnivariateMinimum.findMinimum(double x,
UnivariateFunction f,
int fracDigits)
Find minimum (first estimate given, desired number of fractional digits specified) |
double |
UnivariateMinimum.findMinimum(UnivariateFunction f)
Find minimum (no first estimate given) |
double |
UnivariateMinimum.findMinimum(UnivariateFunction f,
int fracDigits)
Find minimum (no first estimate given, desired number of fractional digits specified) |
static double |
NumericalDerivative.firstDerivative(UnivariateFunction f,
double x)
determine first derivative |
double |
UnivariateMinimum.optimize(double x,
UnivariateFunction f,
double tol)
The actual optimization routine (Brent's golden section method) |
double |
UnivariateMinimum.optimize(double x,
UnivariateFunction f,
double tol,
double lowerBound,
double upperBound)
The actual optimization routine (Brent's golden section method) |
double |
UnivariateMinimum.optimize(UnivariateFunction f,
double tol)
The actual optimization routine (Brent's golden section method) |
double |
UnivariateMinimum.optimize(UnivariateFunction f,
double tol,
double lowerBound,
double upperBound)
The actual optimization routine (Brent's golden section method) |
static double |
NumericalDerivative.secondDerivative(UnivariateFunction f,
double x)
determine second derivative |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |