Uses of Interface
jebl.math.MultivariateFunction

Packages that use MultivariateFunction
jebl.evolution.coalescent   
jebl.math   
 

Uses of MultivariateFunction in jebl.evolution.coalescent
 

Classes in jebl.evolution.coalescent that implement MultivariateFunction
 class Coalescent
          A likelihood function for the coalescent.
 

Uses of MultivariateFunction in jebl.math
 

Methods in jebl.math with parameters of type MultivariateFunction
static double[] NumericalDerivative.diagonalHessian(MultivariateFunction f, double[] x)
          determine diagonal of Hessian
 double MultivariateMinimum.findMinimum(MultivariateFunction f, double[] xvec)
          Find minimum close to vector x
 double MultivariateMinimum.findMinimum(MultivariateFunction f, double[] xvec, int fxFracDigits, int xFracDigits)
          Find minimum close to vector x (desired fractional digits for each parameter is specified)
 double MultivariateMinimum.findMinimum(MultivariateFunction f, double[] xvec, int fxFracDigits, int xFracDigits, MinimiserMonitor monitor)
          Find minimum close to vector x (desired fractional digits for each parameter is specified)
protected  OrthogonalSearch.RoundOptimiser OrthogonalSearch.generateOrthogonalRoundOptimiser(MultivariateFunction mf)
           
static double[] NumericalDerivative.gradient(MultivariateFunction f, double[] x)
          determine gradient
static void NumericalDerivative.gradient(MultivariateFunction f, double[] x, double[] grad)
          determine gradient
 void MinimiserMonitor.newMinimum(double value, double[] parameterValues, MultivariateFunction beingOptimized)
          Inform monitor of a new minimum, along with the current arguments.
abstract  void MultivariateMinimum.optimize(MultivariateFunction f, double[] xvec, double tolfx, double tolx)
          The actual optimization routine (needs to be implemented in a subclass of MultivariateMinimum).
 void OrthogonalSearch.optimize(MultivariateFunction f, double[] xvec, double tolfx, double tolx)
           
 void MultivariateMinimum.optimize(MultivariateFunction f, double[] xvec, double tolfx, double tolx, MinimiserMonitor monitor)
          The actual optimization routine It finds a minimum close to vector x when the absolute tolerance for each parameter is specified.
 void OrthogonalSearch.optimize(MultivariateFunction f, double[] xvec, double tolfx, double tolx, MinimiserMonitor monitor)
           
 

Constructors in jebl.math with parameters of type MultivariateFunction
OrthogonalLineFunction(MultivariateFunction func)
          construct univariate function from multivariate function
OrthogonalLineFunction(MultivariateFunction func, int selectedDimension, double[] initialArguments)
          construct univariate function from multivariate function