|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use MultivariateFunction | |
---|---|
jebl.evolution.coalescent | |
jebl.math |
Uses of MultivariateFunction in jebl.evolution.coalescent |
---|
Classes in jebl.evolution.coalescent that implement MultivariateFunction | |
---|---|
class |
Coalescent
A likelihood function for the coalescent. |
Uses of MultivariateFunction in jebl.math |
---|
Methods in jebl.math with parameters of type MultivariateFunction | |
---|---|
static double[] |
NumericalDerivative.diagonalHessian(MultivariateFunction f,
double[] x)
determine diagonal of Hessian |
double |
MultivariateMinimum.findMinimum(MultivariateFunction f,
double[] xvec)
Find minimum close to vector x |
double |
MultivariateMinimum.findMinimum(MultivariateFunction f,
double[] xvec,
int fxFracDigits,
int xFracDigits)
Find minimum close to vector x (desired fractional digits for each parameter is specified) |
double |
MultivariateMinimum.findMinimum(MultivariateFunction f,
double[] xvec,
int fxFracDigits,
int xFracDigits,
MinimiserMonitor monitor)
Find minimum close to vector x (desired fractional digits for each parameter is specified) |
protected OrthogonalSearch.RoundOptimiser |
OrthogonalSearch.generateOrthogonalRoundOptimiser(MultivariateFunction mf)
|
static double[] |
NumericalDerivative.gradient(MultivariateFunction f,
double[] x)
determine gradient |
static void |
NumericalDerivative.gradient(MultivariateFunction f,
double[] x,
double[] grad)
determine gradient |
void |
MinimiserMonitor.newMinimum(double value,
double[] parameterValues,
MultivariateFunction beingOptimized)
Inform monitor of a new minimum, along with the current arguments. |
abstract void |
MultivariateMinimum.optimize(MultivariateFunction f,
double[] xvec,
double tolfx,
double tolx)
The actual optimization routine (needs to be implemented in a subclass of MultivariateMinimum). |
void |
OrthogonalSearch.optimize(MultivariateFunction f,
double[] xvec,
double tolfx,
double tolx)
|
void |
MultivariateMinimum.optimize(MultivariateFunction f,
double[] xvec,
double tolfx,
double tolx,
MinimiserMonitor monitor)
The actual optimization routine It finds a minimum close to vector x when the absolute tolerance for each parameter is specified. |
void |
OrthogonalSearch.optimize(MultivariateFunction f,
double[] xvec,
double tolfx,
double tolx,
MinimiserMonitor monitor)
|
Constructors in jebl.math with parameters of type MultivariateFunction | |
---|---|
OrthogonalLineFunction(MultivariateFunction func)
construct univariate function from multivariate function |
|
OrthogonalLineFunction(MultivariateFunction func,
int selectedDimension,
double[] initialArguments)
construct univariate function from multivariate function |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |